Exercices de Fubini-Tonelli et convolutions

1 Théorème de Fubini-Tonelli

Exercice 1
Soit \(f(x,y) = \frac{x^2-y^2}{(x^2+y^2)^2} \). Montrer que
\[
\int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) \, dx \right) \, dy \neq \int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) \, dy \right) \, dx.
\]
Y a-t-il contradiction avec le théorème de Fubini ? (on pourra calculer l’intégrale de \(|f|\) sur l’anneau \(S_\varepsilon = \{(x,y) \in \mathbb{R}^2 | \varepsilon \leq x^2+y^2 \leq 1 \} \).)

Correction ▼

Exercice 2
Montrer que la fonction \((x,y) \mapsto e^{-y} \sin^2 xy \) est intégrable pour la mesure de Lebesgue sur \([0,1] \times (0,+\infty)\); en déduire la valeur de
\[
\int_0^{+\infty} \int_0^1 (\sin y)^2 e^{-y} \, dy.
\]

Correction ▼

2 Produit de convolution

Exercice 3
Soient \(f \in L^1(\mathbb{R}^n) \) et \(g \in L^p(\mathbb{R}^n) \) avec \(1 \leq p \leq +\infty \), où \(\mathbb{R}^n \) est muni de la mesure de Lebesgue. Montrer que, pour presque tout \(x \in \mathbb{R}^n \), la fonction \(y \mapsto f(x-y) g(y) \) est intégrable sur \(\mathbb{R}^n \) et que le produit de convolution de \(f \) et \(g \) défini par
\[
f * g(x) = \int_{\mathbb{R}^n} f(x-y) g(y) \, dy
\]
vérifie \(f * g(x) = g * f(x) \) et
\[
\|f * g\|_p \leq \|f\|_1 \|g\|_p.
\]

Correction ▼

Exercice 4
Soient \(a,b > 0 \), et \(f \) et \(g \) les fonctions définies sur \(\mathbb{R}^n \) par \(f(x) = e^{-\frac{ax^2}{2}} \) et \(g(x) = e^{-\frac{by^2}{2}} \). Calculer \(f * g(x) \).

Correction ▼

Exercice 5
1. Pour tout \(t > 0 \), on pose :
\[
f_t(x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}}.
\]
(a) Montrer que, pour tout $t > 0$, $\int_{\mathbb{R}^n} f_t(x) \, dx = 1$.
(b) Montrer que, pour tout $\delta > 0$, $\lim_{t \to 0} \int_{|x| > \delta} f_t(x) \, dx = 0$.
(On dit que f_t est une \emph{approximation de la distribution de Dirac}.)

2. Soit g une fonction continue bornée. Montrer que $f_t * g$ est bien définie et que $$\lim_{t \to 0} f_t * g(x) = g(x).$$

\textbf{Correction ▼} [005961]

\textbf{Exercice 6}
Soient $f, g \in L^1(\mu)$ où μ est la mesure de Lebesgue sur \mathbb{R}^n. On note \hat{f} la transformée de Fourier définie par $$\hat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i (y,x)} \, dx,$$
où (\cdot, \cdot) désigne le produit scalaire de \mathbb{R}^n. Montrer que
\begin{enumerate}
\item $\int_{\mathbb{R}^n} f(x) \hat{g}(x) \, dx = \int_{\mathbb{R}^n} \hat{f}(x) g(x) \, dx.$
\item $\hat{f} * \hat{g} = \hat{f \ast g}$.
\end{enumerate}
\textbf{Correction ▼} [005962]

\textbf{Exercice 7}
Calculer la transformée de Fourier de la gaussienne définie, pour $x \in \mathbb{R}^n$, par $f(x) = e^{-\frac{|x|^2}{2a^2}}$, où $a > 0$.
\textbf{Correction ▼} [005963]
Correction de l’exercice 1▲

On a

\[\int_{-1}^{1} \left(\int_{-1}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \right) \, dy = \int_{-1}^{1} \left(-\frac{x}{(x^2 + y^2)^2} \right) \, dy \]

\[= - \int_{-1}^{1} \frac{2}{1 + y^2} \, dy = -2 \arctan \frac{1}{1} = -\pi. \]

\[\int_{-1}^{1} \left(\int_{-1}^{1} \frac{y^2 - x^2}{(x^2 + y^2)^2} \, dy \right) \, dx = \int_{-1}^{1} \left(\frac{y}{(x^2 + y^2)^2} \right) \, dx \]

\[= \int_{-1}^{1} \frac{2}{(x^2 + 1)} \, dx = 2 \arctan \frac{1}{1} = \pi. \]

Il n’y a pas de contradiction avec le théorème de Fubini car la fonction \(f \) n’appartient pas à \(L^1([-1, 1] \times [-1, 1]) \). En effet, soit \(S_\epsilon = \{(x, y) \in \mathbb{R}^2 : \epsilon \leq x^2 + y^2 \leq 1 \} \). On a

\[\int_{[-1,1] \times [-1,1]} |f| \, d\mu \geq \int_{S_\epsilon} |f| \, d\mu = 2 \pi \int_{\theta=0}^{\frac{\pi}{2}} \cos^2 \theta \, dr \, d\theta = 4 \pi \int_{\theta=0}^{\frac{\pi}{2}} \cos^2 \theta \, dr \, d\theta = -4 \log \epsilon \rightarrow \infty \]

lorsque \(\epsilon \rightarrow 0 \), et donc \(f \notin L^1([-1, 1] \times [-1, 1]) \).

Correction de l’exercice 2▲

Le théorème de Tonelli donne :

\[\int_{[0,1] \times (0, +\infty)} |e^{-y} \sin 2xy| \, dx \, dy \leq \int_{0}^{+\infty} e^{-y} \, dy = 1 < +\infty, \]

ce qui prouve que la fonction \((x, y) \rightarrow e^{-y} \sin 2xy \) est intégrable pour la mesure de Lebesgue sur \([0, 1] \times (0, +\infty)\). Le théorème de Fubini donne alors la valeur \(I \) de l’intégrale de cette fonction :

\[I = \int_{0}^{1} dx \int_{0}^{+\infty} e^{-y} \sin 2xy \, dy \]

\[= \int_{0}^{1} \frac{(2x)(1 + 4x^2)^{-1}}{4} \, dx = \frac{\log 5}{4} \]

\[I = \int_{0}^{+\infty} e^{-y} \sin 2xy \, dx = \int_{0}^{+\infty} e^{-y} \frac{\sin^2 y}{y} \, dy. \]

Correction de l’exercice 3▲

Soient \(f \in L^1(\mathbb{R}^n) \) et \(g \in L^p(\mathbb{R}^n) \) avec \(1 \leq p \leq +\infty \), où \(\mathbb{R}^n \) est muni de la mesure de Lebesgue. L’identité \(f * g(x) = g * f(x) \) s’obtient par changement de variable. En ce qui concerne l’inégalité \(||f * g||_p \leq ||f||_1 \, ||g||_p \), on distingue les cas en fonction de la valeur de \(p \).

1. Pour \(p = +\infty \), c’est clair.

2. Supposons que \(p = 1 \) et posons \(F(x, y) = f(x - y) \, g(y) \). Pour presque tout \(y \in \mathbb{R}^n \), on a :

\[\int_{\mathbb{R}^n} |F(x, y)| \, dx = |g(y)| \int_{\mathbb{R}^n} |f(x - y)| \, dx = |g(y)| \cdot ||f||_1, \]

et

\[\int_{\mathbb{R}^n} dy \int_{\mathbb{R}^n} |F(x, y)| \, dx = ||f||_1 \, ||g||_1. \]

D’après le théorème de Tonelli, \(F \in L^1(\mathbb{R}^n \times \mathbb{R}^n) \). D’après le théorème de Fubini, on a

\[\int_{\mathbb{R}^n} |F(x, y)| \, dy < +\infty \]

pour presque tout \(x \in \mathbb{R}^n \),
et
\[\int_{\mathbb{R}^n} dx \int_{\mathbb{R}^n} |F(x,y)| dy \leq \|f\|_1 \|g\|_1. \]
Ainsi,
\[\|f \ast g\|_1 = \int_{\mathbb{R}^n} dx |f \ast g(x)| = \int_{\mathbb{R}^n} dx \left| \int_{\mathbb{R}^n} F(x,y) dy \right| \leq \|f\|_1 \|g\|_1. \]

3. Supposons que \(1 < p < +\infty \). Utilisons le cas précédent, en faisant jouer ici à \(g^p \) le rôle alors joué par \(g \). Alors pour presque tout \(x \in \mathbb{R}^n \) fixé, la fonction \(y \mapsto |f(x-y)|^{\frac{1}{p}}|g(y)|^\frac{1}{p} \) est intégrable sur \(\mathbb{R}^n \), i.e. la fonction \(y \mapsto |f(x-y)|^{\frac{1}{p}}|g(y)| \) appartient à \(L^p(\mathbb{R}^n) \). Soit \(p' \) tel que \(\frac{1}{p} + \frac{1}{p'} = 1 \). La fonction \(y \mapsto |f(x-y)|^{\frac{1}{p}} \) appartient à \(L^{p'}(\mathbb{R}^n) \) car \(f \in L^1(\mathbb{R}^n) \) et la mesure de Lebesgue est invariante par translation. D’après l’inégalité de Hölder,
\[|f(x-y)| |g(y)| = |f(x-y)|^{\frac{1}{p}} |g(y)| |f(x-y)|^{\frac{1}{p}} \in L^1(\mathbb{R}^n) \]
et
\[\int_{\mathbb{R}^n} |f(x-y)||g(y)| \leq \left(\int_{\mathbb{R}^n} |f(x-y)| |g(y)|^p \right)^{\frac{1}{p}} \|f\|_1^{\frac{1}{p}}, \]
ainsi
\[|(f \ast g)(x)|^p \leq (|f| |g|^p)(x) \cdot \|f\|_1^p. \]
D’après le cas précédent, on voit que
\[f \ast g \in L^p(\mathbb{R}^n) \quad \text{et} \quad \|f \ast g\|_p^p \leq \|f\|_1 \|g\|_p \|f\|_1^p, \]
c’est-à-dire
\[\|f \ast g\|_p \leq \|f\|_1 \|g\|_p. \]

Correction de l’exercice 4

Soient \(a,b > 0 \), et \(f \) et \(g \) les fonctions définies sur \(\mathbb{R}^n \) par \(f(x) = e^{-\frac{ax_2^2}{2}} \) et \(g(x) = e^{-\frac{bx_2^2}{2}} \). On a
\[f \ast g(x) = \int_{\mathbb{R}^n} f(x-y) g(y) dy = \int_{\mathbb{R}^n} e^{-\frac{\|x-y\|^2}{2}} dy \]
Or
\[a|x-y|^2 + b|y|^2 = \sum_{i=1}^n ax_i^2 + (a+b)y_i^2 - 2ax_i y_i \]
\[= \sum_{i=1}^n ax_i^2 + (a+b)Y_i - 2ax_i \left(\frac{a}{a+b} y_i \right) = \sum_{i=1}^n \left(a - \frac{a^2}{a+b} \right) x_i^2 + (a+b) \left(y_i - \frac{a}{a+b} y_i \right)^2 \]
\[= \frac{ab}{a+b} \|x\|^2 + (a+b) \left| y - \frac{a}{a+b} x \right|^2. \]
Ainsi
\[f \ast g(x) = e^{-\frac{ab}{a+b} \|x\|^2} \int_{\mathbb{R}^n} e^{-\frac{(a+b)|y-y_0|^2}{2}} dy = e^{-\frac{ab}{a+b} \|x\|^2} \int_{\mathbb{R}^n} e^{-\frac{(a+b)|z|^2}{2}} dz \]
car la mesure de Lebesgue est invariante par translation. En utilisant \(\int_{\mathbb{R}^n} e^{-t^2} dt = \sqrt{\pi} \), on obtient alors :
\[f \ast g(x) = \left(\frac{2\pi}{a+b} \right)^{\frac{n}{2}} e^{-\frac{ab}{a+b} \|x\|^2}. \]

Correction de l’exercice 5

4
1. Pour tout $t > 0$, on pose :

\[f_t(x) = (4\pi t)^{-\frac{3}{2}} e^{-\frac{|x|^2}{4t}}. \]

(a) On a

\[
\int_{\mathbb{R}^n} f_t(x) \, dx = (4\pi t)^{-\frac{3}{2}} \int_{\mathbb{R}^n} e^{-\frac{|x|^2}{4t}} \, dx = (4\pi t)^{-\frac{3}{2}} \prod_{i=1}^n \int_{\mathbb{R}} e^{-\frac{x_i^2}{4t}} \, dx_i.
\]

Sachant que $\int_{\mathbb{R}} e^{-t^2} \, dt = \sqrt{\pi}$, on en déduit que

\[
\int_{\mathbb{R}^n} f_t(x) \, dx = 1.
\]

(b) Soit $\varepsilon > 0$. Puisque f_1 est intégrable sur \mathbb{R}^n, il existe un $R > 0$ tel que

\[
\int_{\mathbb{R}^n} f_1(x) \, dx < \varepsilon.
\]

On remarque que $f_t(x) = t^{-\frac{3}{2}} f_1\left(\frac{x}{\sqrt{t}}\right)$. On a alors,

\[
\int_{\mathbb{R}^n} f_t(x) \, dx = \int_{\mathbb{R}^n} t^{-\frac{3}{2}} f_1\left(\frac{x}{\sqrt{t}}\right) \, dx = t^{-\frac{3}{2}} \int_{(0,R)^n} f_1(z) t^2 \, dz
\]

\[
= \int_{(0,R)^n} f_1(z) \, dz \leq \varepsilon,
\]

dès que $t < \frac{2^2}{R^2}$.

2. Soit g une fonction continue bornée. Alors il existe $M > 0$ tel que $|g| < M$ et

\[
\int_{\mathbb{R}^n} |f_t(x-y) g(y)| \, dy \leq M \int_{\mathbb{R}^n} f_t(x-y) \, dy = M < +\infty,
\]

ainsi $y \mapsto f_t(x-y) g(y)$ est intégrable et $f_t \ast g$ est bien définie. Puisque $\int_{\mathbb{R}^n} f_t(x) \, dx = 1$, on a

\[
|f_t \ast g(x) - g(x)| = |\int_{\mathbb{R}^n} f_t(y) g(x-y) \, dy - \int_{\mathbb{R}^n} f_t(y) g(x) \, dy|
\]

\[
\leq \int_{\mathbb{R}^n} f_t(y) |g(x-y) - g(x)| \, dy.
\]

Soit $\varepsilon > 0$. Puisque g est continue en $x \in \mathbb{R}^n$, il existe $\delta > 0$ tel que $|y| < \delta \Rightarrow |g(x-y) - g(x)| < \varepsilon$. Alors

\[
|f_t \ast g(x) - g(x)| \leq \int_{(0,\delta)^n} f_t(y) |g(x-y) - g(x)| \, dy
\]

\[
+ \int_{(\mathbb{R} \setminus (0,\delta)^n)} f_t(y) |g(x-y) - g(x)| \, dy
\]

\[
\leq \varepsilon \int_{(0,\delta)^n} f_t(y) \, dy + 2M \int_{(\mathbb{R} \setminus (0,\delta)^n)} f_t(y) \, dy
\]

\[
\leq \varepsilon + 2M \int_{(\mathbb{R} \setminus (0,\delta)^n)} f_t(y) \, dy.
\]

D’après la question 1.(b), il existe $t_0 > 0$ tel que pour $t < t_0$, $\int_{(0,\delta)^n} f_t(y) \, dy \leq \frac{\varepsilon}{2M}$. Ainsi pour $t < t_0$,

\[
|f_t \ast g(x) - g(x)| < 2\varepsilon,
\]

i.e.

\[
\lim_{t \to 0} f_t \ast g(x) = g(x).
\]
Correction de l’exercice 6 ▲
Soient \(f,g \in L^1(\mathbb{R}^n) \). On note \(\hat{f} \) la transformée de Fourier définie par
\[
\hat{f}(y) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i (x,y)} \, dx,
\]
où \((\cdot,\cdot)\) désigne le produit scalaire de \(\mathbb{R}^n \).

1. On a \(\|\hat{g}\|_\infty \leq \|g\|_1 \), ce qui implique que \(f \hat{g} \) est intégrable. De même \(\hat{f} g \) est intégrable. De plus \(F(x,y) = f(x)g(y)e^{-2\pi i (x,y)} \) appartient à \(L^1(\mathbb{R}^n \times \mathbb{R}^n) \). D’après le théorème de Fubini,
\[
\int_{\mathbb{R}^n} f(x) \hat{g}(x) \, dx = \int_{\mathbb{R}^n} dx f(x) \int_{\mathbb{R}^n} g(y)e^{-2\pi i (x,y)} \, dy
= \int_{\mathbb{R}^n} dy g(y) \int_{\mathbb{R}^n} f(x)e^{-2\pi i (x,y)} \, dx = \int_{\mathbb{R}^n} \hat{f}(y) g(y) \, dx.
\]

2. On a
\[
\hat{f} \ast g(x) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i (y,x)} \, dy = \int_{\mathbb{R}^n} dy e^{-2\pi i (x,y)} \int_{\mathbb{R}^n} f(y-z) g(z) \, dz
= \int_{\mathbb{R}^n} dy \int_{\mathbb{R}^n} e^{-2\pi i (x,y-z)} e^{-2\pi i (y,z)} f(y-z) \, dz
= \int_{\mathbb{R}^n} e^{-2\pi i (x,u)} f(u) \, du \int_{\mathbb{R}^n} e^{-2\pi i (x,z)} g(z) \, dz
= \hat{f}(x) \hat{g}(x).
\]

Correction de l’exercice 7 ▲
Supposons tout d’abord \(n = 1 \). Soit la gaussienne définie pour \(x \in \mathbb{R} \) par \(f(x) = e^{-\frac{a^2}{2} x^2} \), où \(a > 0 \). Posons
\[
h(t) = \int_{\mathbb{R}} f(x) e^{-2\pi i a x} \, dx = \int_{\mathbb{R}} e^{-\frac{a^2}{a^2} x^2} e^{-2\pi i a x} \, dx.
\]
D’après le théorème de convergence dominée, \(h \) est dérivable et
\[
h'(t) = -2\pi i \int_{\mathbb{R}} x e^{-\frac{a^2}{2} x^2} e^{-2\pi i a x} \, dx = \left[2\pi i \frac{1}{a} e^{-\frac{a^2}{2} x^2} e^{-2\pi i a x} \right]_{-\infty}^{+\infty} + (2\pi i)^2 t \frac{1}{a} \int_{\mathbb{R}} e^{-\frac{a^2}{2} x^2} e^{-2\pi i a x} \, dx
= -(2\pi i)^2 \frac{1}{a} t \cdot h(t).
\]
De plus,
\[
h(0) = \int_{\mathbb{R}} f(x) \, dx = \int_{\mathbb{R}} e^{-\frac{a^2}{2} x^2} \, dx = \int_{\mathbb{R}} e^{-a^2 u^2} du \sqrt{\frac{\sqrt{2\pi}}{\sqrt{a}}}
= \sqrt{2\pi} \sqrt{\frac{\sqrt{2\pi}}{\sqrt{a}}}
\]
La solution de l’équation différentielle \(h'(t) = -(2\pi i)^2 \frac{1}{a} t \cdot h(t) \) avec condition initiale \(h(0) = \frac{\sqrt{\sqrt{2\pi}}}{\sqrt{a}} \) est
\[
h(t) = \sqrt{2\pi} a e^{-\frac{2\pi i}{a^2} t^2}.
\]
Pour \(n > 1 \), on a :
\[
\int_{\mathbb{R}^n} f(x) e^{-2\pi i (t,x)} \, dx = \int_{\mathbb{R}^n} e^{-\frac{a^2}{2} x^2} e^{-2\pi i a x} \, dx
= \prod_{i=1}^{n} \int_{\mathbb{R}} e^{-\frac{a^2}{2} x^2} e^{-2\pi i a x} \, dx = \prod_{i=1}^{n} h(t_i) = \left(\sqrt{\frac{2\pi}{a}} \right)^n e^{-\frac{(2\pi i)^2}{a} t^2}
\]