Trigonométrie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile
I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 *IT
Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1. $\sin x = 0$,
2. $\sin x = 1$,
3. $\sin x = -1$,
4. $\cos x = 1$,
5. $\cos x = -1$,
6. $\cos x = 0$,
7. $\tan x = 0$,
8. $\tan x = 1$.

Correction ▼

Exercice 2 *IT
Résoudre dans \mathbb{R} puis dans $[0, 2\pi]$ les équations suivantes :

1. $\sin x = \frac{1}{\sqrt{2}}$,
2. $\sin x = -\frac{1}{\sqrt{2}}$,
3. $\tan x = -1$,
4. $\tan x = \frac{1}{\sqrt{3}}$,
5. $\cos x = \frac{\sqrt{3}}{2}$,
6. $\cos x = -\frac{1}{\sqrt{2}}$.

Correction ▼

Exercice 3 **IT
Résoudre dans \mathbb{R} puis dans I les équations suivantes :

1. $\sin(2x) = \frac{1}{2}$, $I = [0, 2\pi]$,
2. $\sin \left(\frac{x}{2}\right) = -\frac{1}{\sqrt{2}}$, $I = [0, 4\pi]$,
3. $\tan(5x) = 1$, $I = [0, \pi]$,
4. \(\cos(2x) = \cos^2 x, \ I = [0, 2\pi] \),
5. \(2\cos^2 x - 3\cos x + 1 = 0, \ I = [0, 2\pi] \),
6. \(\cos(nx) = 0 \ (n \in \mathbb{N}^+) \),
7. \(|\cos(nx)| = 1 \),
8. \(\sin(nx) = 0 \),
9. \(|\sin(nx)| = 1 \),
10. \(\sin x = \tan x, \ I = [0, 2\pi] \),
11. \(12\cos^2 x - 8\sin^2 x = 2, \ I = [-\pi, \pi] \).

Correction

Exercice 4 **IT**
Résoudre dans \(I \) les inéquations suivantes :

1. \(\cos x \leq \frac{1}{2}, \ I = [-\pi, \pi] \),
2. \(\sin x \geq -\frac{1}{\sqrt{2}}, \ I = \mathbb{R} \),
3. \(\cos x > \cos \frac{x}{2}, \ I = [0, 2\pi] \),
4. \(\cos^2 x \geq \cos(2x), \ I = [-\pi, \pi] \),
5. \(\cos^2 x \leq \frac{1}{2}, \ I = [0, 2\pi] \),
6. \(\cos \frac{x}{3} \leq \sin \frac{x}{3}, \ I = [0, 2\pi] \).

Correction

Exercice 5 **I**
Calculer \(\cos \frac{\pi}{8} \) et \(\sin \frac{\pi}{8} \).

Correction

Exercice 6 **I**
Calculer \(\cos \frac{\pi}{12} \) et \(\sin \frac{\pi}{12} \).

Correction

Exercice 7 ***
Montrer que \(\sum \cos (\pm a_1 \pm a_2 \pm \ldots \pm a_n) = 2^n \cos a_1 \cos a_2 \ldots \cos a_n \) (la somme comporte \(2^n \) termes).

Correction

Exercice 8 ***
1. Calculer \(\prod_{k=1}^{n} \cos \left(\frac{a}{2^k} \right) \) pour \(a \) élément donné de \([0, \pi] \) (penser à \(\sin(2x) = 2\sin x \cos x \)).
2. Déterminer \(\lim_{n \to +\infty} \sum_{k=1}^{n} \ln \left(\cos \left(\frac{a}{2^k} \right) \right) \).
Exercice 9 **
Résoudre dans \mathbb{R} l’équation $2^4\cos^2 x + 1 + 16\sin^2 x - 3 = 20$.

Exercice 10 ***
Soit a un réel distinct de $\frac{1}{\sqrt{3}}$ et $-\frac{1}{\sqrt{3}}$.
1. Calculer $\tan(3\theta)$ en fonction de $\tan \theta$.
2. Résoudre dans \mathbb{R} l’équation :
$$\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2}.$$
On trouvera deux méthodes, l’une algébrique et l’autre utilisant la formule de trigonométrie établie en 1).

Exercice 11 ****
On veut calculer $S = \tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$.
1. Calculer $\tan(5x)$ en fonction de $\tan x$.
2. En déduire un polynôme de degré 4 dont les racines sont $\tan 9^\circ$, $-\tan 27^\circ$, $-\tan 63^\circ$ et $\tan 81^\circ$ puis la valeur de S.

Exercice 12 ***
Combien l’équation
$$\tan x + \tan(2x) + \tan(3x) + \tan(4x) = 0,$$
possède-t-elle de solutions dans $[0, \pi]$?

Exercice 13 **!
On veut calculer $\cos^2 \frac{2\pi}{5}$ et $\sin^2 \frac{2\pi}{5}$. Pour cela, on pose $a = 2\cos \frac{2\pi}{5}$, $b = 2\cos \frac{4\pi}{5}$ et $z = e^{2i\pi/5}$.
1. Vérifier que $a = z + z^4$ et $b = z^2 + z^3$.
2. Vérifier que $1 + z + z^2 + z^3 + z^4 = 0$.
3. En déduire un polynôme de degré 2 dont les racines sont a et b puis les valeurs exactes de $\cos^2 \frac{2\pi}{5}$ et $\sin^2 \frac{2\pi}{5}$.

Exercice 14 **!
Calculer une primitive de chacune des fonctions suivantes :
1. $x \mapsto \cos^2 x$,
2. $x \mapsto \cos^4 x$,
3. $x \mapsto \sin^4 x$.
4. $x \mapsto \cos^2 x \sin^2 x$.
5. $x \mapsto \sin^6 x$.
6. $x \mapsto \cos x \sin^6 x$.
7. $x \mapsto \cos^5 x \sin^2 x$.
8. $x \mapsto \cos^3 x$.

Exercice 15

Calculer $I = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^6 x \, dx$ et $J = \int_{\pi/6}^{\pi/3} \cos^4 x \sin^7 x \, dx$.

Exercice 16

Démontrer les identités suivantes, en précisant à chaque fois leur domaine de validité :
1. $\frac{1 - \cos x}{\sin x} = \tan \left(\frac{x}{2} \right)$,
2. $\sin \left(x - \frac{2\pi}{3} \right) + \sin x + \sin \left(x + \frac{2\pi}{3} \right) = 0$,
3. $\tan \left(\frac{\pi}{4} + x \right) + \tan \left(\frac{\pi}{4} - x \right) = \frac{2}{\cos (2x)}$,
4. $\frac{1}{\tan x} - \tan x = \frac{2}{\tan (2x)}$.

Exercice 17

Soit k un réel distinct de -1 et de 1.

1. Etudier les variations de $f_k : x \mapsto \sin x \sqrt{1 - 2k \cos x + k^2}$.
2. Calculer $\int_0^\pi f_k(x) \, dx$.

Exercice 18

Calculer les sommes suivantes :
1. $\sum_{k=0}^n \cos(kx)$ et $\sum_{k=0}^n \sin(kx)$, ($x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés).
2. $\sum_{k=0}^n \cos^2(kx)$ et $\sum_{k=0}^n \sin^2(kx)$, ($x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés).
3. $\sum_{k=0}^n \binom{n}{k} \cos(kx)$ et $\sum_{k=0}^n \binom{n}{k} \sin(kx)$, ($x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés).

Exercice 19

Résoudre le système \[
\begin{align*}
\cos a + \cos b + \cos c &= 0 \\
\sin a + \sin b + \sin c &= 0
\end{align*}
\] où a, b et c sont trois réels.

Exercice 20
Montrer que \(\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{3}{2}. \)

Exercice 21 ***

1. Résoudre dans \(\mathbb{R} \) l’équation \(\cos(3x) = \sin(2x) \).

2. En déduire les valeurs de \(\sin x \) et \(\cos x \) pour \(x \) élément de \(\{ \frac{\pi}{10}, \frac{\pi}{8}, \frac{3\pi}{10} \} \).
Correction de l’exercice 1 ▲

1. \(\sin x = 0 \iff x \in \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{0, \pi, 2\pi\} \).
2. \(\sin x = 1 \iff x \in \frac{\pi}{2} + 2\pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{ \frac{\pi}{2} \} \).
3. \(\sin x = -1 \iff x \in -\frac{\pi}{2} + 2\pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{ \frac{3\pi}{2} \} \).
4. \(\cos x = 1 \iff x \in 2\pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{0, 2\pi\} \).
5. \(\cos x = -1 \iff x \in \pi + 2\pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{ \pi \} \).
6. \(\cos x = 0 \iff x \in \frac{\pi}{2} + \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{ \frac{3\pi}{2}, \frac{3\pi}{2} \} \).
7. \(\tan x = 0 \iff x \in \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{0, \pi, 2\pi\} \).
8. \(\tan x = 1 \iff x \in \frac{\pi}{4} + \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{ \frac{5\pi}{4}, \frac{5\pi}{4} \} \).

Correction de l’exercice 2 ▲

1. \(\sin x = \frac{1}{2} \iff x \in \left(\frac{\pi}{6} + 2\pi \mathbb{Z} \right) \cup \left(\frac{5\pi}{6} + 2\pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\} \).
2. \(\sin x = -\frac{1}{\sqrt{2}} \iff x \in \left(-\frac{\pi}{4} + 2\pi \mathbb{Z} \right) \cup \left(-\frac{3\pi}{4} + 2\pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ -\frac{\pi}{4}, -\frac{3\pi}{4} \right\} \).
3. \(\tan x = -1 \iff x \in -\frac{\pi}{4} + \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,\pi]} = \left\{ \frac{3\pi}{4} \right\} \).
4. \(\tan x = \frac{1}{\sqrt{3}} \iff x \in \frac{\pi}{6} + \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,\pi]} = \left\{ \frac{\pi}{6} \right\} \).
5. \(\cos x = \frac{\sqrt{3}}{2} \iff x \in \left(-\frac{\pi}{6} + \pi \mathbb{Z} \right) \cup \left(\frac{\pi}{6} + \pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ \frac{\pi}{6}, \frac{11\pi}{6} \right\} \).
6. \(\cos x = -\frac{1}{\sqrt{2}} \iff x \in \left(-\frac{3\pi}{4} + \pi \mathbb{Z} \right) \cup \left(\frac{3\pi}{4} + \pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ \frac{3\pi}{4}, \frac{5\pi}{4} \right\} \).

Correction de l’exercice 3 ▲

1. \(\sin(2x) = \frac{1}{2} \iff 2x \in \left(\frac{\pi}{6} + 2\pi \mathbb{Z} \right) \cup \left(\frac{5\pi}{6} + 2\pi \mathbb{Z} \right) \iff x \in \left(\frac{\pi}{12} + \pi \mathbb{Z} \right) \cup \left(\frac{5\pi}{12} + \pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12} \right\} \).
2. \(\sin \frac{x}{2} = -\frac{1}{\sqrt{2}} \iff \frac{x}{2} \in \left(\frac{5\pi}{4} + 2\pi \mathbb{Z} \right) \cup \left(\frac{3\pi}{4} + 2\pi \mathbb{Z} \right) \iff x \in \left(\frac{5\pi}{2} + 4\pi \mathbb{Z} \right) \cup \left(\frac{3\pi}{2} + 4\pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,4\pi]} = \left\{ \frac{5\pi}{2}, \frac{7\pi}{2} \right\} \).
3. \(\tan(5x) = 1 \iff 5x \in \frac{\pi}{4} + \pi \mathbb{Z} \iff x \in \frac{\pi}{20} + \frac{\pi}{4} \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,\pi]} = \left\{ \frac{\pi}{20}, \frac{9\pi}{20}, \frac{13\pi}{20}, \frac{17\pi}{20} \right\} \).
4. \(\cos(2x) = \cos^2 x \iff \cos(2x) = \frac{1}{2} (1 + \cos(2x)) \iff \cos(2x) = 1 \iff 2x \in 2\pi \mathbb{Z} \iff x \in \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{0, 2\pi\} \).
5. \(2\cos^2 x - 3\cos x + 1 = 0 \iff 2\cos x - 1)(\cos x - 1) = 0 \iff \cos x = \frac{1}{2} \) ou \(\cos x = 1 \iff x \in \left(-\frac{\pi}{3} + 2\pi \mathbb{Z} \right) \cup \left(\frac{\pi}{3} + 2\pi \mathbb{Z} \right) \). De plus, \(\mathcal{J}_{[0,2\pi]} = \left\{ \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi \right\} \).
6. \(\cos(nx) = 0 \iff nx \in \frac{\pi}{4} + \pi \mathbb{Z} \iff x \in \frac{\pi}{4n} + \frac{\pi}{4} \mathbb{Z} \).
7. \(|\cos(nx)| = 1 \iff nx \in \pi \mathbb{Z} \iff x \in \frac{\pi}{n} \mathbb{Z} \).
8. \(\sin(nx) = 0 \iff nx \in \pi \mathbb{Z} \iff x \in \frac{\pi}{n} \mathbb{Z} \).
9. \(|\sin(nx)| = 1 \iff nx \in \frac{\pi}{2} + \pi \mathbb{Z} \iff x \in \frac{\pi}{2n} + \frac{\pi}{2} \mathbb{Z} \).
10. \(\sin x = \tan x \iff \sin x = \frac{\sin x}{\cos x} = 0 \iff \sin x \cos x - 1 = 0 \iff \sin x = 0 \) ou \(\cos x = 1 \iff x \in \pi \mathbb{Z} \). De plus, \(\mathcal{J}_{[0,2\pi]} = \{0, \pi, 2\pi\} \).
11.

\[
\sin(2x) + \sin x = 0 \iff \sin(2x) = \sin(x + \pi) \iff (\exists k \in \mathbb{Z} / 2x = x + \pi + 2k\pi) \text{ ou } (\exists k \in \mathbb{Z} / 2x = -x + 2k\pi) \\
\iff (\exists k \in \mathbb{Z} / x = \pi + 2k\pi) \text{ ou } (\exists k \in \mathbb{Z} / x = \frac{2k\pi}{3})
\]

De plus, \(\mathcal{S}_{[0,2\pi]} = \{0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, 2\pi\} \).

12.

\[
12\cos^2 x - 8\sin^2 x = 2 \iff 6\cos^2 x - 4(1 - \cos^2 x) = 1 \iff \cos^2 x = \frac{1}{2} \iff \cos x = \frac{1}{\sqrt{2}} \text{ ou } \cos = -\frac{1}{\sqrt{2}} \\
\iff x \in \left(-\frac{\pi}{4} + \pi\mathbb{Z}\right) \cup \left(\frac{\pi}{4} + \pi\mathbb{Z}\right) \iff x \in \frac{\pi}{4} + \frac{\pi}{2}\mathbb{Z}.
\]

Correction de l’exercice 4

1. Pour \(x \in [-\pi, \pi]\), \(\cos x \leqslant \frac{1}{2} \iff x \in [-\pi, -\frac{\pi}{3}] \cup [\frac{\pi}{3}, \pi]\).

2. Pour \(x \in \mathbb{R}\), \(\sin x \geqslant -\frac{1}{\sqrt{2}} \iff x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + 2k\pi, \frac{5\pi}{4} + 2k\pi\right]\).

3. Pour \(x \in [0,2\pi]\),

\[
\cos x > \cos \frac{x}{2} \iff 2\cos^2 \frac{x}{2} - \cos \frac{x}{2} - 1 > 0 \iff (2\cos \frac{x}{2} + 1)(\cos \frac{x}{2} - 1) > 0 \iff 2\cos \frac{x}{2} + 1 < 0 \text{ et } \cos \frac{x}{2} \neq 1 \\
\iff \cos \frac{x}{2} < -\frac{1}{2} \text{ et } x / 2 \notin 2\pi\mathbb{Z} \iff x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{2\pi}{3} + 2k\pi, \frac{4\pi}{3} + 2k\pi\right] \text{ et } x / 2 \notin 4\pi\mathbb{Z} \\
\iff x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{4\pi}{3} + 4k\pi, \frac{8\pi}{3} + 4k\pi\right] \text{ et } x / 2 \notin 4\pi\mathbb{Z} \iff x \in \left[\frac{4\pi}{3}, 2\pi\right].
\]

4. Pour \(x \in [-\pi, \pi]\), \(\cos^2 x \geqslant \cos(2x) \iff \frac{1}{2}(1 + \cos(2x)) \geqslant \cos(2x) \iff \cos(2x) \leqslant 1 \iff x \in [-\pi, \pi]\).

5. Pour \(x \in [0,2\pi]\), \(\cos^2 x \leqslant \frac{1}{2} \iff -\sqrt{2} \leqslant \cos x \leqslant \frac{1}{\sqrt{2}} \iff x \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right] \cup \left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]\).

6. Pour \(x \in [0,2\pi]\),

\[
\cos \frac{x}{3} \leqslant \sin \frac{x}{3} \iff \frac{1}{\sqrt{2}} \sin \frac{x}{3} - \frac{1}{\sqrt{2}} \cos \frac{x}{3} \geqslant 0 \iff \sin \left(\frac{x}{3} - \frac{\pi}{4}\right) \geqslant 0 \iff \exists k \in \mathbb{Z} / 2k\pi \leqslant \frac{x}{3} - \frac{\pi}{4} \leqslant \pi + 2k\pi \\
\iff \exists k \in \mathbb{Z} / \frac{3\pi}{4} + 6k\pi \leqslant x \leqslant \frac{3\pi}{4} + 6k\pi \iff \frac{3\pi}{4} \leqslant x \leqslant 2\pi
\]

Correction de l’exercice 5

\[
\cos^2 \frac{\pi}{8} = \frac{1}{2}(1 + \cos(2 \times \frac{\pi}{8})) = \frac{1}{2}(1 + \sqrt{2}) = \frac{2 + \sqrt{2}}{4}, \text{ et puisque } \cos \frac{\pi}{8} > 0,
\]

\[
\cos \frac{\pi}{8} = \frac{1}{2}\sqrt{2 + \sqrt{2}}.
\]

De même, puisque \(\sin \frac{\pi}{8} > 0\), \(\sin \frac{\pi}{8} = \frac{1}{2}(1 - \cos(2 \times \frac{\pi}{8}))\) et
\[\sin \frac{\pi}{8} = \frac{1}{2} \sqrt{2 - \sqrt{2}}. \]

Correction de l'exercice 6 ▲

\[
\cos \frac{\pi}{12} = \cos \left(\frac{\pi}{3} - \frac{\pi}{4} \right) = \cos \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}.
\]

De même,

\[
\sin \frac{\pi}{12} = \sin \left(\frac{\pi}{3} - \frac{\pi}{4} \right) = \sin \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}.
\]

Correction de l'exercice 7 ▲

Pour \(n \) naturel non nul, on pose \(S_n = \sum e^{i(\pm a_1 \pm \cdots \pm a_n)} \). \(S_1 = e^{i a_1} + e^{-i a_1} = 2 \cos a_1 \) \(\bullet \) Soit \(n \geq 1 \). Supposons que \(S_n = 2^n \cos a_1 \cdots \cos a_n \) alors

\[
S_{n+1} = \sum e^{i(\pm a_1 \pm \cdots \pm a_{n+1})} = e^{i a_{n+1}} \sum e^{i(\pm a_1 \pm \cdots \pm a_n)} + e^{-i a_{n+1}} \sum e^{i(\pm a_1 \pm \cdots \pm a_n)} = 2 \cos(a_{n+1}) S_n = 2^{n+1} \cos a_1 \cdots \cos a_{n+1}.
\]

On a montré par récurrence que : \(\forall n \geq 1, \ S_n = 2^n \cos a_1 \cdots \cos a_n. \) Ensuite, pour \(n \geq 1, \) \(\sum \cos(\pm a_1 \pm \cdots \pm a_n) = \Re(S_n) = 2^n \cos a_1 \cdots \cos a_n \) (et on obtient aussi \(\sum \sin(\pm a_1 \pm \cdots a_n) = \Im(S_n) = 0 \)).

\[\forall n \in \mathbb{N}^*, \sum \cos(\pm a_1 \pm \cdots a_n) = 2^n \cos a_1 \cdots \cos a_n. \]

Correction de l'exercice 8 ▲

1. Soit \(n \in \mathbb{N}^* \). Puisque \(a \) est dans \([0, \pi[^2 \) alors, pour tout entier naturel non nul \(k, \ \frac{a}{2^k} \) est dans \([0, \pi[^2 \) et donc \(\sin \frac{a}{2^k} \neq 0 \). De plus, puisque \(\sin \left(\frac{a}{2^{k+r}} \right) = \sin \left(\frac{2}{2^k} \right) = 2 \sin \left(\frac{a}{2^k} \right) \cos \left(\frac{a}{2^k} \right) \), on a :

\[
\prod_{k=1}^{n} \cos \left(\frac{a}{2^k} \right) = \prod_{k=1}^{n} \sin \left(\frac{a}{2^k} \right) \frac{1}{2 \sin \left(\frac{a}{2^k} \right)} = \frac{1}{2^n \sin \left(\frac{a}{2^n} \right) \sin \left(\frac{a}{2^{n-1}} \right) \cdots \sin \left(\frac{a}{2} \right) \sin \left(\frac{a}{2} \right)} = \frac{\sin a}{2^n \sin \frac{a}{2^n}}.
\]

\[\forall a \in [0, \pi[^2, \forall n \in \mathbb{N}^*, \prod_{k=1}^{n} \cos \left(\frac{a}{2^k} \right) = \frac{\sin a}{2^n \sin \frac{a}{2^n}}. \]

2. \(\forall k \in \mathbb{N}^*, \ \cos \left(\frac{a}{2^k} \right) > 0 \) car \(\frac{a}{2^k} \) est dans \([0, \frac{\pi}{2}[\). Puis

\[
\sum_{k=1}^{n} \ln \left(\cos \left(\frac{a}{2^k} \right) \right) = \ln \left(\prod_{k=1}^{n} \cos \left(\frac{a}{2^k} \right) \right) = \ln \left(\frac{\sin a}{2^n \sin \frac{a}{2^n}} \right) = \ln \left(\frac{\sin a}{a} \right) - \ln \left(\frac{\sin a}{2^n \sin \frac{a}{2^n}} \right).
\]

Maintenant, \(\lim_{n \to +\infty} \frac{\sin \frac{a}{2^n}}{\frac{a}{2^n}} = \lim_{x \to 0} \frac{\sin x}{x} = 1 \) et donc,

\[
\lim_{n \to +\infty} \sum_{k=1}^{n} \ln \left(\cos \left(\frac{a}{2^k} \right) \right) = \lim_{n \to +\infty} \left(\ln \left(\frac{\sin a}{a} \right) - \ln \left(\frac{\sin a}{2^n \sin \frac{a}{2^n}} \right) \right) = \ln \left(\frac{\sin a}{a} \right).
\]
Correction de l’exercice 9

Soit $x \in \mathbb{R}$.

\[
2^{4\cos^2 x + 1} + 16.2^{4\sin^2 x - 3} = 20 \iff 2^{4\cos^2 x + 1} + 16.2^{1-4\cos^2 x} = 20 \iff 2^{4\cos^2 x - 10 + 16 \times 2^{-4\cos^2 x}} = 0
\]

\[
\iff 2^{4\cos^2 x} - 10 + \frac{16}{2^{4\cos^2 x}} = 0 \iff (2^{4\cos^2 x})^2 - 10 \times 2^{4\cos^2 x} + 16 = 0
\]

\[
\iff 2^{4\cos^2 x} = 2 \text{ ou } 2^{4\cos^2 x} = 8 \iff 4\cos^2 x = 1 \text{ ou } 4\cos^2 x = 3
\]

\[
\iff \cos x = \frac{1}{2} \text{ ou } \cos x = -\frac{1}{2} \iff \cos x = \frac{\sqrt{3}}{2} \text{ ou } \cos x = -\frac{\sqrt{3}}{2}
\]

\[
x \in \left(\frac{\pi}{6} + \frac{\pi}{2} \mathbb{Z}\right) \cup \left(\frac{\pi}{3} + \frac{\pi}{2} \mathbb{Z}\right).
\]

Correction de l’exercice 10

1. Tout d’abord, d’après la formule de MOIVRE,

\[
\cos(3\theta) + i\sin(3\theta) = (\cos \theta + i\sin \theta)^3 = (\cos^3 \theta - 3\cos \theta \sin^2 \theta) + i(3\cos^2 \theta \sin \theta - \sin^3 \theta),
\]

et par identification des parties réelles et imaginaires,

\[
\forall \theta \in \mathbb{R}, \cos(3\theta) = \cos^3 \theta - 3\cos \theta \sin^2 \theta \text{ et } \sin(3\theta) = 3\cos^2 \theta \sin \theta - \sin^3 \theta.
\]

Ensuite, \(\tan(3\theta)\) et \(\tan \theta\) existent \(\iff 3\theta \notin \frac{\pi}{2} + \pi \mathbb{Z}\) et \(\theta \notin \frac{\pi}{2} + \pi \mathbb{Z}\) \(\iff 3\theta \notin \frac{\pi}{2} + \pi \mathbb{Z}\) \(\iff \theta \notin \frac{\pi}{6} + \frac{\pi}{2} \mathbb{Z} \). Soit donc \(\theta \notin \frac{\pi}{6} + \frac{\pi}{2} \mathbb{Z}\).

\[
\tan(3\theta) = \frac{\sin(3\theta)}{\cos(3\theta)} = \frac{3\cos^2 \theta \sin \theta - \sin^3 \theta}{\cos^3 \theta - 3\cos \theta \sin^2 \theta} = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta},
\]

après division du numérateur et du dénominateur par le réel non nul \(\cos^3 \theta\).

\[
\forall \theta \in \mathbb{R} \setminus \left(\frac{\pi}{6} + \frac{\pi}{2} \mathbb{Z}\right), \tan(3\theta) = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}.
\]

2. Soit \(a \neq \pm \frac{1}{\sqrt{3}}\). 1ère méthode. \(a\) est bien sûr racine de l’équation proposée, ce qui permet d’écrire :

\[
\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2} \iff (3x - x^3)(1 - 3a^2) = (1 - 3x^2)(3a - a^3) \text{ (car } \pm \frac{1}{\sqrt{3}} \text{ ne sont pas solution de l’équation)}
\]

\[
\iff (x - a)((3a^2 - 1)x^2 + 8ax - a^2 + 3) = 0.
\]

Le discriminant réduit du trinôme \((3a^2 - 1)x^2 + 8ax - a^2 + 3\) vaut :

\[
\Delta' = 16a^2 - (3a^2 - 1)(-a^2 + 3) = 3a^4 + 6a^2 + 3 = (\sqrt{3}(a^2 + 1))^2 > 0.
\]

L’équation proposée a donc trois racines réelles :
2ème méthode. Il existe un unique réel $\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[\cup \left\{ -\frac{\pi}{6}, \frac{\pi}{6}\right\}$ tel que $a = \tan \alpha$. De même, si x est un réel distinct de $\pm \frac{1}{\sqrt{3}}$, il existe un unique réel $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[\cup \left\{ -\frac{\pi}{6}, \frac{\pi}{6}\right\}$ tel que $x = \tan \theta$ (à savoir $\alpha = \arctan a$ et $\theta = \arctan x$). Comme $\pm \frac{1}{\sqrt{3}}$, ne sont pas solution de l’équation proposée, on a :

\[\frac{3x - x^3}{1 - 3x^2} = \frac{3a - a^3}{1 - 3a^2} \iff \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha} \iff \tan(3\theta) = \tan(3\alpha) \implies 3\theta \in 3\alpha + \pi \mathbb{Z} \iff \theta \in \alpha + \frac{\pi}{3} \mathbb{Z}.
\]

Ceci refournit les solutions $x = \tan \alpha = a$, puis

\[x = \tan\left(\alpha + \frac{\pi}{3}\right) = \frac{\tan \alpha + \tan \frac{\pi}{3}}{1 - \tan \alpha \tan \frac{\pi}{3}} = \frac{a + \sqrt{3}}{1 - \sqrt{3}a} = \frac{(a + \sqrt{3})(1 + \sqrt{3}a)}{1 - 3a^2} = \frac{4a + \sqrt{3}(a^2 + 1)}{1 - 3a^2},
\]

et $x = \tan\left(\alpha - \frac{\pi}{3}\right) = \frac{4a - \sqrt{3}(a^2 + 1)}{1 - 3a^2}$.

Correction de l’exercice 11 ▲

1. Pour $x \notin \frac{\pi}{10} + \frac{\pi}{3} \mathbb{Z}$,

\[
\tan(5x) = \frac{\text{Im}(e^{ix})^5}{\text{Re}(e^{ix})^5} = \frac{5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x}{\cos^5 x - 10 \cos^3 x \sin^3 x + 5 \cos x \sin^4 x} = \frac{5 \tan x - 10 \tan^3 x + \tan^5 x}{1 - 10 \tan^2 x + 5 \tan^4 x},
\]

après division du numérateur et du dénominateur par le réel non nul $\cos^5 x$.

\[\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{10} + \frac{\pi}{3} \mathbb{Z}\right), \tan(5x) = \frac{5 \tan x - 10 \tan^3 x + \tan^5 x}{1 - 10 \tan^2 x + 5 \tan^4 x}.
\]

2. 9°, -27°, -63° et 81° vérifient $\tan(5 \times 9^\circ) = \tan(5 \times (-27^\circ)) = \tan(5 \times (-63^\circ)) = \tan(5 \times 81^\circ) = 1$. On résoud donc l’équation :

\[\tan(5x) = 1 \iff 5x \in \left(\frac{\pi}{4} + \pi \mathbb{Z}\right) \iff x \in \left(\frac{\pi}{20} + \frac{\pi}{5} \mathbb{Z}\right).
\]

Les solutions, exprimées en degrés et éléments de $\left] -90^\circ, 90^\circ\right[, \text{sont} -63^\circ$, -27°, 9°, 45° et 81°. Ainsi, les cinq nombres $\tan(-63^\circ)$, $\tan(-27^\circ)$, $\tan(9^\circ)$, $\tan(45^\circ)$ et $\tan(81^\circ)$ sont deux à deux distincts et solutions de l’équation $\frac{5X-10X^3+X^5}{1-10X^2+3X^4} = 1$ qui s’écrit encore :

\[X^5 - 5X^4 - 10X^3 + 10X^2 + 5X - 1 = 0.
\]

Le polynôme $X^5 - 5X^4 - 10X^3 + 10X^2 + 5X - 1$ admet déjà $\tan(45^\circ) = 1$ pour racine et on a

\[X^5 - 5X^4 - 10X^3 + 10X^2 + 5X - 1 = (X - 1)(X^4 - 4X^3 - 14X^2 - 4X + 1).
\]

Les quatre nombres $\tan(-63^\circ)$, $\tan(-27^\circ)$, $\tan(9^\circ)$ et $\tan(81^\circ)$ sont ainsi les racines du polynôme $X^4 - 4X^3 - 14X^2 - 4X + 1$. Ce dernier peut donc encore s’écrire $(X - \tan(9^\circ))(X + \tan(27^\circ))(X + \tan(63^\circ))(X - \tan(81^\circ))$. L’opposé du coefficient de X^3 à savoir 4 vaut donc également $\tan(9^\circ) - \tan(27^\circ) - \tan(63^\circ) + \tan(81^\circ)$ et on a montré que :
Correction de l’exercice 12 ▲
Pour $x \in [0, \pi]$, posons $f(x) = \tan x + \tan(2x) + \tan(3x) + \tan(4x)$.

$f(x)$ existe $\iff \tan x, \tan(2x), \tan(3x)$ et $\tan(4x)$ existent

$\iff (x \notin \frac{\pi}{2} + n\pi \mathbb{Z}), (2x \notin \frac{\pi}{2} + n\pi \mathbb{Z}), (3x \notin \frac{\pi}{2} + n\pi \mathbb{Z})$ et $(4x \notin \frac{\pi}{2} + n\pi \mathbb{Z})$

$\iff (x \notin \frac{\pi}{2} + n\pi \mathbb{Z}), (x \notin \frac{\pi}{4} + n\pi \mathbb{Z}), (x \notin \frac{\pi}{6} + n\pi \mathbb{Z})$ et $(x \notin \frac{\pi}{8} + n\pi \mathbb{Z})$

$\iff x \notin \left\{ \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{\pi}{2}, \frac{7\pi}{2} \right\}$.

f est définie et continue sur $[0, \frac{\pi}{8} \cup \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4} \cup \frac{\pi}{4}, \frac{3\pi}{8}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{5\pi}{8}, \frac{5\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{\pi}{2}, \frac{7\pi}{2}$.

Sur chacun des dix intervalles précédents, f est définie, continue et strictement croissante en tant que somme de fonctions strictement croissantes. La restriction de f à chacun de ces dix intervalles est donc bijective de l’intervalle considéré sur l’intervalle image, ce qui montre déjà que l’équation proposée, que l’on note (E), a au plus une solution par intervalle et donc au plus dix solutions dans $[0, \pi]$. Sur $I = [0, \frac{\pi}{8} \cup \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4} \cup \frac{\pi}{4}, \frac{3\pi}{8}, \frac{3\pi}{8}, \frac{\pi}{2}, \frac{5\pi}{8}, \frac{5\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{\pi}{2}, \frac{7\pi}{2}$, puisque $f(0) = f(\pi) = 0$, (E) a exactement une solution dans I. Ensuite, dans l’expression de somme f, une et une seule des quatre fonctions est un infiniment grand en chacun des nombres considérés ci-dessus, à l’exception de $\frac{\pi}{2}$. En chacun de ces nombres, f est un infiniment grand. L’image par f de chacun des six intervalles ouverts n’ayant pas $\frac{\pi}{2}$ pour borne est donc $]-\infty, +\infty[$ et (E) admet exactement une solution dans chacun de ces intervalles d’après le théorème des valeurs intermédiaires. Ceci porte le total à $6 + 2 = 8$ solutions. En $\frac{\pi}{2}^-$, $\tan x$ et $\tan(3x)$ tendent vers $+\infty$ tandis que $\tan(2x)$ et $\tan(4x)$ tendent vers 0. f tend donc vers $+\infty$ en $\frac{\pi}{2}^-$, et de même f tend vers $-\infty$ en $\frac{\pi}{2}^+$. L’image par f de chacun des deux derniers intervalles est donc encore une fois $]-\infty, +\infty[$. Finalement,

(E) admet exactement dix solutions dans $[0, \pi]$.

Correction de l’exercice 13 ▲

1. D’après les formules d’Euler,

$$z + z^4 = e^{2i\pi/5} + e^{8i\pi/5} = e^{2i\pi/5} + e^{-2i\pi/5} = 2\cos \frac{2\pi}{5} = a.$$

De même,

$$z^2 + z^3 = e^{4i\pi/5} + e^{6i\pi/5} = e^{4i\pi/5} + e^{-4i\pi/5} = 2\cos \frac{4\pi}{5} = b.$$

2. Puisque $z \neq 1$ et $z^5 = e^{2i\pi} = 1$,

$$1 + z + z^2 + z^3 + z^4 = \frac{1 - z^5}{1 - z} = \frac{1 - 1}{1 - z} = 0.$$

$$\tan(9^\circ) - \tan(27^\circ) - \tan(63^\circ) + \tan(81^\circ) = 4.$$
3. $a + b = z + z^2 + z^3 + z^4 = -1$ et $ab = (z+z^4)(z^2+z^3) = z^3 + z^4 + z^5 + z^7 = z + z^2 + z^3 + z^4 = -1$. Donc,

\[
a + b = -1 \text{ et } ab = -1.
\]

Ainsi, a et b sont les solutions de l’équation $X^2 + X - 1 = 0$ à savoir les nombres $\frac{-1 \pm \sqrt{5}}{2}$. Puisque $\frac{2\pi}{5} \in]0, \frac{\pi}{2} [$ et $\frac{2\pi}{5} \in]\frac{\pi}{2}, \pi [$, on a $a > 0$ et $b > 0$. Finalement,

\[
\cos \frac{2\pi}{5} = -\frac{1+\sqrt{5}}{4} \text{ et } \cos \frac{4\pi}{5} = -\frac{1-\sqrt{5}}{4}.
\]

Correction de l’exercice 14 ▲

1. $\cos^2 x = \frac{1}{2}(1 + \cos(2x))$ et une primitive de $x \mapsto \cos^2 x$ est $x \mapsto \frac{1}{2}(x + \frac{1}{2} \sin(2x))$.

2. D’après les formules d’Euler,

\[
\cos^4 x = \left(\frac{1}{2}(e^{ix} + e^{-ix})\right)^4 = \frac{1}{16}(e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix})
\]

\[
= \frac{1}{16}(2\cos(4x) + 8\cos(2x) + 6) = \frac{1}{8}(\cos(4x) + 4\cos(2x) + 3)
\]

Donc, une primitive de la fonction $x \mapsto \cos^4 x$ est $x \mapsto \frac{1}{8}(\frac{1}{4}\sin(4x) + 2\sin(2x) + 3x)$.

3.

\[
\sin^4 x = \left(\frac{1}{2i}(e^{ix} - e^{-ix})\right)^4 = \frac{1}{16}(e^{4ix} - 4e^{2ix} + 6 - 4e^{-2ix} + e^{-4ix})
\]

\[
= \frac{1}{16}(2\cos(4x) - 8\cos(2x) + 6) = \frac{1}{8}(\cos(4x) - 4\cos(2x) + 3)
\]

Donc, une primitive de la fonction $x \mapsto \sin^4 x$ est $x \mapsto \frac{1}{8}(\frac{1}{4}\sin(4x) - 2\sin(2x) + 3x)$.

4. $\cos^2 x \sin^2 x = \frac{1}{4}\sin^2(2x) = \frac{1}{8}(1 - \cos(4x))$ et une primitive de la fonction $x \mapsto \cos^2 x \sin^2 x$ est $x \mapsto \frac{1}{8}(x - \frac{1}{4}\sin(4x))$.

5.

\[
\sin^6 x = \left(\frac{1}{2i}(e^{ix} - e^{-ix})\right)^6 = -\frac{1}{64}(e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix})
\]

\[
= -\frac{1}{64}(2\cos(6x) - 12\cos(4x) + 30\cos(2x) - 20) = \frac{1}{32}(-\cos(6x) + 6\cos(4x) - 15\cos(2x) + 10)
\]

Donc, une primitive de la fonction $x \mapsto \sin^6 x$ est $x \mapsto \frac{1}{72}(-\frac{1}{6}\sin(6x) + \frac{3}{2}\sin(4x) - \frac{5}{2}\sin(2x) + 10x)$.

6. $\cos x \sin^6 x = \sin' x \sin^6 x$ et une primitive de $x \mapsto \cos x \sin^6 x$ est $x \mapsto \frac{1}{72} \sin' x$.

7. $\cos^5 x \sin^2 x = \cos x (1 - \sin^2 x)^2 \sin^2 x = \sin^2 x \sin^2 x - 2 \sin x \sin^4 x + \sin^6 x$ et une primitive de $x \mapsto \cos^5 x \sin^2 x$ est $x \mapsto \frac{1}{5} \sin^3 x - 2 \sin^2 x + \frac{1}{2} \sin x$.

8. $\cos^3 x = \sin' x - \sin' x \sin^2 x$ et une primitive de $x \mapsto \cos^3 x$ est $x \mapsto \sin x - \frac{1}{3} \sin^3 x$.

Correction de l’exercice 15 ▲
1. Pour x réel, on a :

$$\cos^4 x \sin^6 x = \left(\frac{1}{2} e^{ix} + e^{-ix} \right)^4 \left(\frac{1}{2i} e^{ix} - e^{-ix} \right)^6$$

$$= -\frac{1}{2^{10}} (e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}) (e^{6ix} - 6e^{4ix} + 15e^{2ix} - 20 + 15e^{-2ix} - 6e^{-4ix} + e^{-6ix})$$

$$= -\frac{1}{2^{10}} (e^{10ix} - 2e^{8ix} - 3e^{6ix} + 8e^{4ix} + 2e^{2ix} - 12 + 2e^{-2ix} + 8e^{-4ix} - 3e^{-6ix} - 2e^{-8ix} + e^{-10ix})$$

$$= -\frac{1}{2^9} \cos(10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6)$$

$$= -\frac{1}{512} \cos(10x - 2\cos 8x - 3\cos 6x + 8\cos 4x + 2\cos 2x - 6)$$

(remarque. La fonction proposée était paire et l’absence de sinus était donc prévisible. Cette remarque guidait aussi les calculs intermédiaires : les coefficients de $e^{2ix}, e^{4ix}, ...$ étaient les mêmes que ceux de $e^{2ix}, e^{4ix}, ...$) Par suite,

$$I = -\frac{1}{512} \left[\frac{\sin(10x) - \sin 8x}{10} - \frac{\sin 6x}{4} - \frac{\sin 2x}{2} + 2\sin 4x + \sin 2x \right]^{\pi/3}_{\pi/6} - 6 \left(\frac{\pi}{3} - \frac{\pi}{6} \right)$$

$$= -\frac{1}{512} \left(\frac{1}{10} - \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - \frac{3}{4} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) - \frac{1}{2} (0 - 0) + 2(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}) + (\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}) - \pi \right)$$

$$= -\frac{1}{512} (\frac{9\sqrt{3} + 4\pi}{2048})$$

2. Pour x réel, on a

$$\cos^4 x \sin^7 x = \cos^4 x \sin^6 x \sin x = \cos^4 x (1 - \cos^2 x)^3 \sin x$$

$$= \cos^4 x \sin x - 3\cos^6 x \sin x + 3\cos^8 x \sin x - \cos^{10} x \sin x.$$

Par suite,

$$J = \left[\frac{\cos^5 x}{5} + \frac{3\cos^7 x}{7} - \frac{\cos^9 x}{3} + \frac{\cos^{11} x}{11} \right]^{\pi/3}_{\pi/6}$$

$$= -\frac{1}{5} \times \frac{1 - 9\sqrt{3}}{32} + \frac{3}{7} \times \frac{1 - 27\sqrt{3}}{128} - \frac{1}{3} \times \frac{1 - 81\sqrt{3}}{512} + \frac{1}{11} \times \frac{1 - 243\sqrt{3}}{2048}$$

$$= \frac{1}{2365440} (-14784(1 - 9\sqrt{3}) + 7920(1 - 27\sqrt{3}) - 1540(1 - 81\sqrt{3}) + 105(1 - 243\sqrt{3}))$$

$$= \frac{1}{2365440} (-8299 + 18441\sqrt{3}).$$

Correction de l’exercice 16 ▲

1. $\tan \frac{x}{2}$ existe si et seulement si $x \notin 2\pi Z$ et $\frac{1 - \cos x}{\sin x}$ existe si et seulement si $x \notin \pi Z$. Pour $x \notin \pi Z$,

$$\frac{1 - \cos x}{\sin x} = 2\sin^2 \frac{x}{2} = \frac{2\sin^2 \frac{x}{2}}{2\sin \frac{x}{2} \cos \frac{x}{2}} = \tan \frac{x}{2}.$$

13
2. **1ère solution.** Pour tout réel \(x \),

\[
\sin(x - \frac{2\pi}{3}) + \sin x + \sin(x + \frac{2\pi}{3}) = -\frac{1}{2} \sin x - \sqrt{3} \cos x + \sin x - \frac{1}{2} \sin x + \sqrt{3} \cos x = 0,
\]

2 ème solution.

\[
\sin \left(x - \frac{2\pi}{3} \right) + \sin x + \sin \left(x + \frac{2\pi}{3} \right) = \text{Im} \left(e^{i(x-\frac{2\pi}{3})} + e^{ix} + e^{i(x+\frac{2\pi}{3})} \right) = \text{Im} \left(e^{ix} (j^2 + 1 + j) \right) = 0.
\]

3. \(\tan \left(\frac{\pi}{4} - x \right) \), \(\tan \left(\frac{\pi}{4} + x \right) \) et \(\frac{2}{\cos(2x)} \) existent si et seulement si \(\frac{\pi}{4} - x, \frac{\pi}{4} + x \) et \(2x \) ne sont pas dans \(\frac{\pi}{2} + \pi \mathbb{Z} \), ce qui équivaut à \(x \notin \frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z} \). Donc, pour \(x \notin \frac{\pi}{4} + \frac{\pi}{2} \mathbb{Z} \),

\[
\tan \left(\frac{\pi}{4} - x \right) + \tan \left(\frac{\pi}{4} + x \right) = \frac{1 - \tan x}{1 + \tan x} + \frac{1 + \tan x}{1 - \tan x} \quad \text{(pour } x \text{ vérifiant de plus } x \notin \frac{\pi}{2} + \pi \mathbb{Z})
\]

\[
= \frac{\cos x - \sin x}{\cos x + \sin x} + \frac{\cos x + \sin x}{\cos x - \sin x} = \frac{(\cos x - \sin x)^2 + (\cos x + \sin x)^2}{\cos^2 x - \sin^2 x} = 2 \frac{\cos^2 x + \sin^2 x}{\cos(2x)} = 2 \cos(2x) (\text{ce qui reste vrai pour } x \in \frac{\pi}{2} + \pi \mathbb{Z}).
\]

4. Pour \(x \notin \frac{\pi}{4} \mathbb{Z} \),

\[
\frac{1}{\tan x} - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} = \frac{2 \cos(2x)}{\sin(2x)} = \frac{2}{\tan(2x)}.
\]

Correction de l’exercice 17 ▲

1. • Pour tout réel \(x \), \(1 - 2k \cos x + k^2 = (k - \cos x)^2 + \sin^2 x \geq 0 \). De plus,

\[
1 - 2k \cos x + k^2 = 0 \Rightarrow k - \cos x = \sin x = 0 \Rightarrow x \in \pi \mathbb{Z} \text{ et } k = \cos x \Rightarrow k \in \{-1, 1\},
\]

donc, \(\forall x \in \mathbb{R} \setminus \{-1, 1\}, \forall k \in \mathbb{R}, \ 1 - 2k \cos x + k^2 > 0 \).

• \(f_k \) est donc définie sur \(\mathbb{R} \), dérivable sur \(\mathbb{R} \) en vertu de théorèmes généraux, impaire et \(2\pi \)-périodique. On l’étudie dorénavant sur \([0, \pi] \). Pour \(x \in [0, \pi] \), on a :

\[
f_k'(x) = \cos x (1 - 2k \cos x + k^2)^{-1/2} - \frac{1}{2} \sin x (2k \sin x) \left(1 - 2k \cos x + k^2 \right)^{-3/2}
\]

\[= (1 - 2k \cos x + k^2)^{-3/2} (\cos x (1 - 2k \cos x + k^2) - k \sin^2 x)
\]

\[= (1 - 2k \cos x + k^2)^{-3/2} (-k \cos^2 x + (1 + k^2) \cos x - k)
\]

\[= (1 - 2k \cos x + k^2)^{-3/2} (k \cos x - 1) (k - \cos x)
\]

\[
\forall x \in \mathbb{R}, f_k'(x) = \frac{(k \cos x - 1) (k - \cos x)}{(1 - 2k \cos x + k^2)^{3/2}}.
\]
1er cas : \(|k| < 1\) et \(k \neq 0\). (si \(k = 0\), \(f_k(x) = \sin x\)) Pour tout réel \(x\), \((1 - 2k\cos x + k^2)^{-3/2}(k\cos x - 1) < 0\) et \(f'_k(x)\) est du signe de \(\cos x - k\).

\[
\begin{array}{c|cccc}
 x & 0 & \text{Arccos } k & \pi \\
f'(x) & + & 0 & - \\
f & 0 & 1 & 0
\end{array}
\]

(car \(f_k(\text{arccos } k) = \frac{\sqrt{1-k^2}}{\sqrt{1-2k^2+k^2}} = 1\)).

2ème cas : \(k > 1\). Pour tout réel \(x\), \((1 - 2k\cos x + k^2)^{-3/2}(k - \cos x) > 0\) et \(f'_k(x)\) est du signe de \(k\cos x - 1\).

\[
\begin{array}{c|cccc}
 x & 0 & \text{Arccos } \frac{1}{k} & \pi \\
f'(x) & + & 0 & - \\
f & 0 & \frac{1}{k} & 0
\end{array}
\]

(car \(f_k(\text{arccos } \frac{1}{k}) = \frac{\sqrt{1-k^2}}{\sqrt{1-2k^2+k^2}} = \frac{1}{k}\)).

3ème cas : \(k < -1\). Pour tout réel \(x\), \((1 - 2k\cos x + k^2)^{-3/2}(k - \cos x) < 0\) et \(f'_k(x)\) est du signe de \(1 - k\cos x\).

\[
\begin{array}{c|cccc}
 x & 0 & \text{Arccos } \frac{1}{k} & \pi \\
f'(x) & + & 0 & - \\
f & 0 & -\frac{1}{k} & 0
\end{array}
\]

(car \(f_k(\text{arccos } \frac{1}{k}) = \frac{\sqrt{1-k^2}}{\sqrt{1-2k^2+k^2}} = -\frac{1}{k}\)).

2. Pour \(k \in \mathbb{R} \setminus \{-1, 1\}\), posons \(I_k = \int_0^\pi f_k(x) \, dx\).

Si \(k = 0\), \(I_k = \int_0^\pi \sin x \, dx = 2\). Sinon,

\[
I_k = \frac{1}{k} \int_0^\pi \frac{2k\sin x}{2\sqrt{1 - 2k\cos x + k^2}} \, dx = \frac{1}{k} \left[\sqrt{1 - 2k\cos x + k^2} \right]_0^\pi
\]

\[
= \frac{1}{k} (\sqrt{1 + 2k + k^2} - \sqrt{1 - 2k + k^2}) = \frac{1}{k} (|k + 1| - |k - 1|).
\]

Plus précisément, si \(k \in]-1, 1[\setminus \{0\}\), \(I_k = \frac{1}{k} ((1 + k) - (1 - k)) = 2\), ce qui reste vrai pour \(k = 0\). Si \(k > 1\), \(I_k = \frac{1}{k} ((1 + k) - (k - 1)) = \frac{2}{k}\), et enfin, si \(k < -1\), \(I_k = \frac{2}{|k|}\). En résumé,

\[\text{Si } k \in]-1, 1[, I_k = 2 \text{ et si } k \in]-\infty, -1[\cup]1, +\infty[, I_k = \frac{2}{|k|}.\]

Correction de l’exercice 18 ▲

1. Soient \(n \in \mathbb{N}\) et \(x \in \mathbb{R}\). Posons \(S_n = \sum_{k=0}^n \cos(kx)\) et \(S'_n = \sum_{k=0}^n \sin(kx)\).
1ère solution.

\[S_n + iS'_n = \sum_{k=0}^{n} (\cos(kx) + i\sin(kx)) = \sum_{k=0}^{n} e^{ikx} = \sum_{k=0}^{n} (e^{ix})^k. \]

Maintenant, \(e^{ix} = 1 \Leftrightarrow x \in 2\pi \mathbb{Z}. \) Donc,

1er cas. Si \(x \in 2\pi \mathbb{Z}, \) on a immédiatement \(S_n = n + 1 \) et \(S'_n = 0. \)

2ème cas. Si \(x \notin 2\pi \mathbb{Z}, \)

\[S_n + iS'_n = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{i(n+1)x/2} - e^{-i(n+1)x/2}}{e^{ix/2} - e^{-ix/2}} = \frac{e^{inx/2} - 2i\sin(n+1)x/2}{-2i\sin x/2} \]

Par identification des parties réelles et imaginaires, on obtient

\[
\sum_{k=0}^{n} \cos(kx) = \begin{cases}
\cos(n+1)x \over \sin x/2 & \text{si } x \notin 2\pi \mathbb{Z} \\
n + 1 & \text{si } x \in 2\pi \mathbb{Z}
\end{cases}
\]

et \(\sum_{k=0}^{n} \sin(kx) = \begin{cases}
\sin(n+1)x \over \sin x/2 & \text{si } x \notin 2\pi \mathbb{Z} \\
0 & \text{si } x \in 2\pi \mathbb{Z}
\end{cases} \)

2ème solution.

\[2\sin^2 \frac{x}{2} \sum_{k=0}^{n} \cos(kx) = \sum_{k=0}^{n} 2\sin^2 \frac{x}{2} \cos(kx) = \sum_{k=0}^{n} (\sin(k + \frac{1}{2})x - \sin(k - \frac{1}{2})x) \]

\[= \left(\sin \frac{x}{2} - \sin \frac{-x}{2} \right) + \left(\sin \frac{3x}{2} - \sin \frac{x}{2} \right) + \ldots + \left(\sin \frac{(2n-1)x}{2} - \sin \frac{(2n-3)x}{2} \right) \]

\[+ \left(\sin \frac{(2n+1)x}{2} - \sin \frac{(2n-1)x}{2} \right) \]

\[= \sin \frac{(2n+1)x}{2} + \sin \frac{x}{2} = 2\sin \frac{(n+1)x}{2} \cos \frac{nx}{2} \]

et donc, si \(x \notin 2\pi \mathbb{Z}, \ldots \)

2. Soient \(n \in \mathbb{N} \) et \(x \in \mathbb{R}. \) Posons \(S_n = \sum_{k=0}^{n} \cos^2(kx) \) et \(S'_n = \sum_{k=0}^{n} \sin^2(kx). \) On a :

\[S_n + S'_n = \sum_{k=0}^{n} (\cos^2(kx) + \sin^2(kx)) = \sum_{k=0}^{n} 1 = n + 1, \]

et

\[S_n - S'_n = \sum_{k=0}^{n} (\cos^2(kx) - \sin^2(kx)) = \sum_{k=0}^{n} \cos(2kx). \]

D’après 1), si \(x \in \pi \mathbb{Z}, \) on trouve immédiatement,

\[\sum_{k=0}^{n} \cos^2(kx) = n + 1 \text{ et } \sum_{k=0}^{n} \sin^2(kx) = 0, \]

et si \(x \notin \pi \mathbb{Z}, \)

\[S_n + S'_n = n + 1 \text{ et } S_n - S'_n = \frac{\cos(nx) \sin(n+1)x}{\sin x}, \]

de sorte que

\[S_n = \frac{1}{2} \left(n + 1 + \frac{\cos(nx) \sin(n+1)x}{\sin x} \right) \text{ et } S'_n = \frac{1}{2} \left(n + 1 - \frac{\cos(nx) \sin(n+1)x}{\sin x} \right). \]
3. Soient \(n \in \mathbb{N} \) et \(x \in \mathbb{R} \).
\[
\left(\sum_{k=0}^{n} C_n^k \cos(kx) \right) + i \left(\sum_{k=0}^{n} C_n^k \sin(kx) \right) = \sum_{k=0}^{n} C_n^k e^{ikx} = \sum_{k=0}^{n} C_n^k (e^{ix})^k 1^{n-k} = (1 + e^{ix})^n = (e^{ix/2} + e^{-ix/2})^n e^{inx/2} = 2^n \cos^n \left(\frac{x}{2} \right) \left(\cos \frac{nx}{2} + i \sin \frac{nx}{2} \right).
\]

Par identification des parties réelles et imaginaires, on obtient alors

\[
\sum_{k=0}^{n} C_n^k \cos(kx) = 2^n \cos^n \left(\frac{x}{2} \right) \cos \left(\frac{nx}{2} \right) \text{ et } \sum_{k=0}^{n} C_n^k \sin(kx) = 2^n \cos^n \left(\frac{x}{2} \right) \sin \left(\frac{nx}{2} \right).
\]

Correction de l’exercice 19

\[
\begin{cases}
\cos a + \cos b + \cos c = 0 \\
\sin a + \sin b + \sin c = 0
\end{cases}
\]
\[
\iff (\cos a + \cos b + \cos c) + i(\sin a + \sin b + \sin c) = 0 \iff e^{ia} + e^{ib} + e^{ic} = 0
\]
\[
\iff |e^{ia} + e^{ib}| = |e^{ic}| = 1 \iff |e^{ia/2} e^{ib/2} (e^{(a-b)/2} + e^{-i(a-b)/2})| = 1
\]
\[
\iff |a-b| = 1
\]
\[
\iff a-b \in \left(\pi + \pi \mathbb{Z} \right) \cup \left(-\pi + \pi \mathbb{Z} \right) \iff a-b \in \left(2 \pi + 2 \pi \mathbb{Z} \right) \cup \left(-2 \pi + 2 \pi \mathbb{Z} \right)
\]
\[
\iff \exists k \in \mathbb{Z}, \exists \epsilon \in \{-1, 1\} / b = a + \epsilon \frac{2 \pi}{3} + 2k \pi.
\]

Par suite, nécessairement, \(e^{ib} = je^{ia} \) ou \(e^{ib} = j^2 e^{ia} \). Réciproquement, si \(e^{ib} = je^{ia} \) ou encore \(b = a + \frac{2 \pi}{3} + 2k \pi \),
\[
e^{ia} + e^{ib} + e^{ic} = 0 \iff e^{ic} = -(e^{ia} + e^{ib}) = -(1 + j)e^{ia} = j^2 e^{ia} \iff \exists k' \in \mathbb{Z} / c = a - \frac{2 \pi}{3} + 2k' \pi,
\]
et si \(e^{ib} = j^2 e^{ia} \) ou encore \(b = a - \frac{2 \pi}{3} + 2k \pi \),
\[
e^{ia} + e^{ib} + e^{ic} = 0 \iff e^{ic} = -(e^{ia} + e^{ib}) = -(1 + j^2) e^{ia} = je^{ia} \iff \exists k' \in \mathbb{Z} / c = a + \frac{2 \pi}{3} + 2k' \pi.
\]

\[\mathcal{S} = \{ (a, a + \epsilon \frac{2 \pi}{3} + 2k \pi, a - \epsilon \frac{2 \pi}{3} + 2k' \pi), a \in \mathbb{R}, \epsilon \in \{-1, 1\}, (k, k') \in \mathbb{Z}^2 \}.
\]

Correction de l’exercice 20

\[
\cos^4 \frac{\pi}{8} + \cos^4 \frac{3 \pi}{8} + \cos^4 \frac{5 \pi}{8} + \cos^4 \frac{7 \pi}{8} = 2(\cos^4 \frac{\pi}{8} + \cos^4 \frac{3 \pi}{8}) = 2(\cos^4 \frac{\pi}{8} + \sin^4 \frac{\pi}{8})
\]
\[
= 2 \left(\left(\cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8} \right)^2 - 2 \cos^2 \frac{\pi}{8} \sin^2 \frac{\pi}{8} \right) = 2 \left(1 - \frac{1}{2} \sin^2 \frac{\pi}{4} \right)
\]
\[
= 2 \left(1 - \frac{1}{4} \right) = \frac{3}{2}
\]

Correction de l’exercice 21

1. \[
\cos(3x) = \sin(2x) \iff \cos(3x) = \cos\left(\frac{\pi}{2} - 2x\right) \iff (\exists k \in \mathbb{Z}) 3x = \frac{\pi}{2} - 2x + 2k\pi \text{ ou } (\exists k \in \mathbb{Z}) 3x = -\frac{\pi}{2} + 2x + 2k\pi
\]
\[
\iff (\exists k \in \mathbb{Z}) x = \frac{\pi}{10} + \frac{2k\pi}{5} \text{ ou } (\exists k \in \mathbb{Z}) x = -\frac{\pi}{2} + 2k\pi
\]
\[
\mathcal{S}_{[0,2\pi]} = \left\{ \frac{\pi}{10}, \frac{9\pi}{10}, \frac{13\pi}{10}, \frac{3\pi}{2}, \frac{17\pi}{10} \right\}.
\]

2. \[
\cos(3x) = \text{Re}(e^{3ix}) = \text{Re}((\cos x + i\sin x)^3) = \cos^3 x - 3\cos x\sin^2 x = \cos^3 x - 3\cos x(1 - \cos^2 x) = 4\cos^3 x - 3\cos x.
\]
\[
\forall x \in \mathbb{R}, \cos(3x) = 4\cos^3 x - 3\cos x.
\]

Par suite,
\[
\cos(3x) = \sin(2x) \iff 4\cos^3 x - 3\cos x = 2\sin x\cos x \iff \cos x(4\cos^2 x - 3 - 2\sin x) = 0
\]
\[
\iff \cos x(-4\sin^2 x - 2\sin x + 1) = 0 \iff (\cos x = 0) \text{ ou } (4\sin^2 x + 2\sin x - 1 = 0).
\]

D’après 1), l’équation \(4\sin^2 x + 2\sin x - 1 = 0\) admet entre autre pour solutions \(\frac{\pi}{10}\) et \(\frac{13\pi}{10}\) (car, dans chacun des deux cas, \(\cos x \neq 0\)), ou encore, l’équation \(4X^2 + 2X - 1 = 0\) admet pour solutions les deux nombres disticts \(X_1 = \sin \frac{\pi}{10}\) et \(X_2 = \sin \frac{13\pi}{10}\), qui sont donc les deux solutions de cette équation. Puisque \(X_1 > 0\) et que \(X_2 < 0\), on obtient
\[
X_1 = -\frac{1 + \sqrt{5}}{4} \text{ et } X_2 = -\frac{1 - \sqrt{5}}{4}.
\]

Donc, (puisque \(\sin \frac{13\pi}{10} = -\sin \frac{3\pi}{10}\)),
\[
\sin \frac{\pi}{10} = -\frac{1 + \sqrt{5}}{4} \text{ et } \sin \frac{3\pi}{10} = \frac{1 + \sqrt{5}}{4}.
\]

Ensuite, \(\sin \frac{3\pi}{10} = \cos \left(\frac{\pi}{2} - \frac{3\pi}{10}\right) = \cos \frac{\pi}{5}\), et donc
\[
\cos \frac{\pi}{5} = \frac{1 + \sqrt{5}}{4}.
\]

Puis
\[
\cos \frac{\pi}{10} = \sqrt{1 - \sin^2 \frac{\pi}{10}} = \frac{1}{4} \sqrt{10 + 2\sqrt{5}}
\]

et de même
\[
\sin \frac{\pi}{5} = \frac{1}{4} \sqrt{10 - 2\sqrt{5}} = \cos \frac{3\pi}{10}.
\]